Research Area F - Publications 2017

Scientific Reports, 7, Article number: 2321, doi:10.1038/s41598-017-02514-5
Scientific Reports, online article

michalakis_wahl-schott_biel_peripherin-2_and_rom-1_have_opposing_e_ects_on_rod_outer_segment_targeting_of_retinitis_pigment.100x0.jpeg

Mutations in the photoreceptor outer segment (OS) specific peripherin-2 lead to autosomal dominant retinitis pigmentosa (adRP). By contrast, mutations in the peripherin-2 homolog Rom-1 cause digenic RP in combination with certain heterozygous mutations in peripherin-2. The mechanisms underlying the differential role of peripherin-2 and Rom-1 in RP pathophysiology ...

|READ MORE|

Front. Neurosci., Volume 11,  Article 292, https://doi.org/10.3389/fnins.2017.00292
Front. Neurosci., online article

biel-michalakis_aav-mediated_gene_supplementation_therapy_in_achromatopsia_type_2_preclinical_data_on_therapeutic_time_wind.100x0.jpeg

Achromatopsia type 2 (ACHM2) is a severe, inherited eye disease caused by mutations in the CNGA3 gene encoding the α subunit of the cone photoreceptor cyclic nucleotide-gated (CNG) channel. Patients suffer from strongly impaired daylight vision, photophobia, nystagmus, and lack of color discrimination. We have previously shown in the Cnga3 knockout (KO) mouse ...

|READ MORE|

J Gene Med. 2017, Volume 19, Issue 3, e2944 https://doi.org/10.1002/jgm.2944
J Gene Med., online article

michalakis_biel_gene_therapy_for_achromatopsia_michalakisj_gene_med_550.100x0.jpeg

The present review summarizes the current status of achromatopsia (ACHM) gene therapy-related research activities and provides an outlook for their clinical application. ACHM is an inherited eye disease characterized by a congenital absence of cone photoreceptor function. As a consequence, ACHM is associated with strongly impaired daylight vision, photophobia, ...

|READ MORE|

The Journal of Physiology, DOI: 10.1113/JP272790
The Journal of Physiology, online article

konnerth-tischbirek_et_al_journal_of_physiology_2016_onle_500.100x0.jpeg

In vivo two-photon Ca2+ imaging has become an effective approach for the functional analysis of neuronal populations, individual neurons and subcellular neuronal compartments in the intact brain. When imaging individually labelled neurons, depth penetration can often reach up to 1 mm below the cortical surface. However, for densely labelled neuronal populations, ...

|READ MORE|

CIPSM Movie
LMUexcellent
TU München
MPG
Helmholtz München
MPI of Neurobiology
MPI of Biochemistry