Discontinuous movement of mRNP particles in nucleoplasmic regions devoid of chromatin
24-Oct-2008
PNAS, 2008, DOI: 10.1073/pnas.0810692105, published on 24.10.2008
www.pnas.org, online article
Messenger ribonucleoprotein particles (mRNPs) move randomly within nucleoplasm before they exit from the nucleus. To further understand mRNP trafficking, we have studied the intranuclear movement of a specific mRNP, the BR2 mRNP, in salivary gland cells in Chironomus tentans. Their polytene nuclei harbor giant chromosomes separated by vast regions of nucleoplasm, which allows us to study mRNP mobility without interference of chromatin. The particles were fluorescently labeled with microinjected oligonucleotides (DNA or RNA) complementary to BR2 mRNA or with the RNA-binding protein hrp36, the C. tentans homologue of hnRNP A1. Using high-speed laser microscopy, we followed the intranuclear trajectories of single mRNPs and characterized their motion within the nucleoplasm. The Balbiani ring (BR) mRNPs moved randomly, but unexpectedly, in a discontinuous manner. When mobile, they diffused with a diffusion coefficient corresponding to their size. Between mobile phases, the mRNPs were slowed down 10-to 250-fold but were never completely immobile. Earlier electron microscopy work has indicated that BR particles can attach to thin nonchromatin fibers, which are sometimes connected to discrete fibrogranular clusters. We propose that the observed discontinuous movement reflects transient interactions between freely diffusing BR particles and these submicroscopic structures.