Polymer Adhesion at the Solid–Liquid Interface Probed by a Single–Molecule Force Sensor

Small, 2009, doi:10.1002/smll.200901237, published on 01.12.2009
Small, online article
A method based on atomic force microscopy is used to delineate the properties that determine single-molecule adhesion onto solid substrates in aqueous environment. Hydrophobicity as well as electrical properties of the substrate and the polymer are varied. In addition, the influence of the solvent composition, in particular the effect of ions, on the molecular adhesion at the solid–liquid interface is studied. Surprisingly, the polymer and surface-related properties account for only small changes in adhesion force, while dissolved ions show a much larger effect. These results point towards the energy of solvation as the most important contribution to adhesion for a wide variety of polymers and substrate materials.

TU München
Helmholtz München
MPI of Neurobiology
MPI of Biochemistry