Structural determinants of MIF functions in CXCR2-mediated inflammatory and atherogenic leukocyte recruitment

PNAS, 2008, 105 no.42, 16278-83 published on 21.10.2008
PNAS, online article
We have recently identified the archaic cytokine macrophage migration inhibitory factor (MIF) as a non-canonical ligand of the CXC chemokine receptors CXCR2 and CXCR4 in inflammatory and atherogenic cell recruitment. Because its affinity for CXCR2 was particularly high, we hypothesized that MIF may feature structural motives shared by canonical CXCR2 ligands, namely the conserved N-terminal Glu-Leu-Arg (ELR) motif. Sequence alignment and structural modeling indeed revealed a pseudo-(E)LR motif (Asp-44-XArg-11) constituted by non-adjacent residues in neighboring loops but with identical parallel spacing as in the authentic ELR motif. Structure–function analysis demonstrated that mutation of residues R11, D44, or both preserve proper folding and the intrinsic catalytic property of MIF but severely compromises its binding to CXCR2 and abrogates MIF/CXCR2-mediated functions in chemotaxis and arrest of monocytes on endothelium under flow conditions. R11A-MIF and the R11A/D44A-MIF double-mutant exhibited a pronounced defect in triggering leukocyte recruitment to early atherosclerotic endothelium in carotid arteries perfused ex vivo and upon application in a peritonitis model. The function of D44A-MIF in peritoneal leukocyte recruitment was preserved as a result of compensatory use of CXCR4. In conjunction, our data identify a pseudo-(E)LR motif as the structural determinant for MIF’s activity as a non-canonical CXCR2 ligand, epitomizing the structural resemblance of chemokine-like ligands with chemokines and enabling selective targeting of pro-inflammatory MIF/CXCR2 interactions.

Campus Movie 2020


Campus Movie 2012

TU München
Helmholtz München
MPI of Neurobiology
MPI of Biochemistry